Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling
نویسندگان
چکیده
Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.
منابع مشابه
Comparison of Plant Litter Composition in Three Range Species and its Effects on Soil Fertility (Case Study: North Eastern Islamabad Rangeland, Kermanshah Province, Iran)
Plant litter is an important factor for soil conservation and sustainability that could modify soil chemical properties and increase the plant biomass production. The aim of this research was to compare plant litter chemical composition and its effects on soil properties in three species including Hordeum bulbosum, Poa bulbosa, Bromus tectorum. First, soil samples were taken in the depth of 0-3...
متن کاملLinks between plant litter chemistry, species diversity, and below-ground ecosystem function.
Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composi...
متن کاملComparison the Amount of Existing Mineral Elements in Plant Aerial Parts, Litter and Soil of Three Range Species in Taleghan Region
The aim of this research was to compare the amounts of existing mineral elements in plant aerial parts, litter and soil ofthree range species (Bromus tomentellus, Psathyrostachys fragilis, Agropyron tauri) in order to investigate the litter effectof species on soil properties of Taleghan rangeland. The measured mineral elements include carbon, nitrogen,phosphorous and potassium. After selection...
متن کاملNon-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet
While litter decomposition is a fundamental ecological process, previous studies have mainly focused on the decay of single species. In this study, we conducted a litter-mixing experiment to investigate litter diversity effects on greenhouse gas (GHG) emissions from an alpine steppe soil in Northern Tibet. Significant non-additive effects of litter diversity on GHG dynamics can be detected; the...
متن کاملHow does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?
Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure ...
متن کامل